Chapter 7 Review

- Redox reactions electrons are either lost or gained.
 - Oxidation \rightarrow loses electrons
 - Reduction \rightarrow gains electrons

• Reactants – present before chemical reaction

- Products present after chemical reaction
- Coefficients the number that precedes symbols and formulas
 - helps determine mole ratios

• Arrows – forms, produces, yields

Synthesis reaction – one product, reactants are either a compound or element
 A + B → AB

 \circ A + B \rightarrow AB

- Decomposition reactions reverse of synthesis
 AB → A + B
- Single replacement
 - \circ A + BC \rightarrow AC + B

• Double replacement • $AB + CD \rightarrow AD + CB$

• Combustion - burning in presence of oxygen

• Bonds – holds the chemical energy

Catalyst – substances that speed up a reaction

- Equilibrium forward and reverse reactions occur at same rate
- Physical equilibrium change of phase, evaporation to condensation
- Chemical equilibrium $2SO_2 + O_2 < \rightarrow 2SO_3$
- Balanced equations to maintain mass, same number of atoms on both sides of equation

Molar mass – atomic mass – expressed as g/mol examples

- Writing and balancing equations
- 1 mole = 6.022×10^{23} atoms
- 180 grams = _____ moles of iron

Classify exothermic and endothermic reactions
 Exothermic = releases energy – product side
 Endothermic = absorbs energy – reactant side

 Conservation of mass – total amount of mass remains the same

• Conservation of energy – total amount of energy remains the same before and after reaction

• Rates of reaction

- Temperature increases rate increases
- Concentration increases rate increases
- Surface area increases rate increases
- Pressure increases rate increases
- Using balance equations
 - \circ 2H₂ + O₂ \rightarrow 2H₂O
 - ${\rm \circ}$ Use 10 moles of ${\rm H_2}$, how many moles of ${\rm H_2O}$ are produced?

• Ca + $O_2 \rightarrow$ CaO, to balance it a student did the following – Ca + $O_2 \rightarrow$ CaO₂ – is this correct – Explain – if not balance correctly.

 No – cannot balance equations by adding subscripts – can only use coefficients

 \circ 2 Ca + O \rightarrow 2 CaO

- Why is ice in liquid water at 0°C in physical equilibrium?
 - Because water is freezing and ice is melting at the same rate
- Why do we balance chemical equations?
 - Helps to show that mass is conserved to maintain an equal # of atoms on both sides
- How does conservation of mass explain why a bit of ash is left after wood is burned?
 - Total mass of log and oxygen equals the total mass of ash and gases formed

• Balance equations

• Identify drawings as types of reactions

• Synthesis, decomposition, single replacement and double replacement

Describe parts of equation
 Reactants, products, yields, coefficients, solids, liquids, gases, and aqueous solutions

- Questions pertaining to exothermic/endothermic reactions
 - Which has more energy products/reactants
 - diagrams
- Cooking steak endothermic- which has more chemical energy cooked or uncooked steak?
 - Cooked steak more chemical energy in bonds because energy was absorbed
- Heat packs vs cold packs
 - Heat pack gives off heat \rightarrow exothermic
 - Cold pack absorbs heat \rightarrow endothermic